

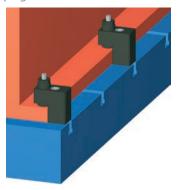
Mechanical T-Slot Clamp MEE

Application area

- For all types of presses
- For various die sizes and clamping dimensions
- For clamping upper and lower dies
- For dies with straight clamping edges
- · For applications in the construction of jigs and fixtures

Mode of operation

 The mechanical T-slot clamp is pushed manually into the machine T-slot. This allows the bracket to be swung into the clamping position.



- The clamping screw is then fed manually to the required clamping dimension.
- The required clamping force is created by turning the operating hexa gon clockwise with a wrench. A wedge clamp system provides a multi ple torque increase.
- Unclamping occurs by turning the operating hexagon counter-clock wise.

Description

A wedge clamp system provides a multiple torque increase. After pushing the bracket into the T-slot and possibly swinging it, the MEE T-slot clamp can be quickly and precisely positioned by the socket head cap screw (SW3, please see back page). After adjusting the clamping screw (SW2) to the relevant clamping dimension, a wedge slide is moved axially in the clamping direction by turning the operating hexagon (SW1) clockwise.

This presses the wedge outwards, which in turn pushes against the wedge bearing, thereby transmitting the clamping force into the press table, slide or fixture. The clamping mechanism enables a high clamping stroke. The clamping stroke can be checked via the operating hexagon's turns. The wedge system is mechanically self-locking so that the clamping force is maintained.

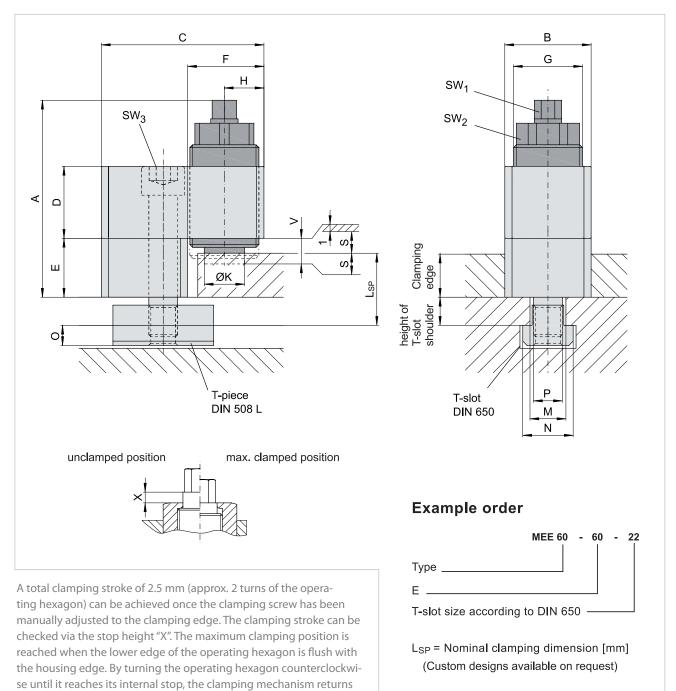
Advantages

- Infinitely variable adaptation to various die sizes
- Large clamping dimension tolerance
- Corrosion protected
- Highest level of clamping force with manual operation
- Mechanically self-locking
- Suitable for retrofitting
- Maintenance free
- Easy installation
- Versatile
- Max. operating temperature 200°C

Accessories

T-bolts

Technical data


Туре	MEE 30	MEE 60	MEE 100		
Clamping force [kN]	30	60	100		
Max torque "SW1" [Nm]	35	80	130		
Max. stroke [mm]	1,5	2,2	2,5		
Max. loading force [kN] ¹⁾	60	120	200		
Max. adjusting stroke "V"	22	25	35		
Weight [kg] aprox.	3	5	8		
T-slot "M" DIN 650*	18 22	22 28	28 36		

^{*} Additional T-slot dimensions avaiable on request.

Mechanical T-Slot Clamp

MEE

ping screws are lubricated-for-life and are maintenance free.																					
Туре	M	V	S		Clamping A edge		4	В	С	D	E*	F	G	Н	ØK	N	0	Р	SW ₁	SW ₂	SW ₃
	T-slot			min.	max.	min.	max.						Thread								
MEE 30	18 22	22	10,5	8 28 48	29 49 69	100 120 140	120 142 162	50	90	40	30 50 70	40	M36 x 3	21	19	28 35	10 14	M16	13	30	14
MEE 60	22 28	25	12	15 35 55	39 59 79	125 145 165	150 170 190	60	113	50	40 60 80	53	M48 x 3	28	28	35 44	14 18	M20	17	41	17
MEE 100	28 36	35	17	15 45	49 79	145 175	180 210	80	150	60	50 80	70	M64 x 4	37	39	44 54	18 22	M24	19	55	19

 $^{{}^*\}operatorname{Preferred\ range\ for\ clamping\ height,}{}_{\operatorname{E}'',\operatorname{custom\ clamping\ heights\ available\ on\ request}$

to its initial position. Under normal operating conditions the clam-